World Library  
Flag as Inappropriate
Email this Article




Category Mineral species
(repeating unit)
Strunz classification 01.DA.05
Color Transparent, green, yellow
Crystal habit Generally found as inclusions in other minerals
Crystal system Most common: 6H hexagonal (6mm), space group: P63mc
Cleavage (0001) indistinct
Fracture Conchoidal – fractures developed in brittle materials characterized by smoothly curving surfaces, e.g., quartz
Mohs scale hardness 9.5
Luster Adamantine to metallic
Streak greenish gray
Diaphaneity transparent
Specific gravity 3.218–3.22
Refractive index nω=2.654 nε=2.967, Birefringence 0.313 (6H form)
Ultraviolet fluorescence green or yellow
Melting point 2730 °C (decomposes)
Solubility none
Other characteristics Not radioactive, non-magnetic
References [1][2][3]

Moissanite ,[4] is the name given to naturally occurring silicon carbide and to its various crystalline polymorphs. It has the chemical formula SiC and is a rare mineral, discovered by the French chemist Henri Moissan in 1893. Years later, it has been synthesized in laboratories.


  • Background 1
  • Geological occurrence 2
  • Meteorites 3
  • Sources 4
  • Physical properties 5
  • Applications 6
  • See also 7
  • References 8
  • Further reading 9


Mineral moissanite was discovered by Henri Moissan while examining rock samples from a meteor crater located in Canyon Diablo, Arizona, in 1893. At first, he mistakenly identified the crystals as diamonds, but in 1904 he identified the crystals as silicon carbide.[5][6] The mineral form of silicon carbide was named moissanite in honor of Moissan later on in his life. The discovery in the Canyon Diablo meteorite and other places was challenged for a long time as carborundum contamination from human abrasive tools.[7]

Geological occurrence

Until the 1950s no other source, apart from meteorites, had been encountered. Later moissanite was found as inclusions in kimberlite from a diamond mine in Yakutia in 1959, and in the Green River Formation in Wyoming in 1958.[8] The existence of moissanite in nature was questioned even in 1986 by Charles Milton, an American geologist.[9]

Moissanite, in its natural form, is very rare. It has only been discovered in a small variety of places from upper mantle rock to meteorites. Discoveries have shown that moissanite occurs naturally as inclusions in diamonds, xenoliths, and ultramafic rocks such as kimberlite and lamproite.[7] They have also been identified in carbonaceous chondrite meteorites as presolar grains.[10]


Analysis of SiC grains found in the Murchison carbonaceous chondrite meteorite has revealed anomalous isotopic ratios of carbon and silicon, indicating an origin from outside the solar system.[11] 99% of these SiC grains originate around carbon-rich Asymptotic giant branch stars. SiC is commonly found around these stars, as deduced from their infrared spectra.


All applications of silicon carbide today use synthetic material, as the natural material is very scarce.

Silicon carbide was first synthesized by Jöns Jacob Berzelius, who is best known for his discovery of silicon.[12] Years later, Edward Goodrich Acheson produced viable minerals that could substitute diamond as an abrasive and cutting material. This was possible, as moissanite is one of the hardest substances known, with a hardness below that of diamond and comparable with those of cubic boron nitride and boron.

Pure synthetic moissanite can be made from thermal decomposition of the preceramic polymer poly(methylsilyne), requiring no binding matrix, e.g., cobalt metal powder.

Physical properties

The crystalline structure is held together with strong covalent bonding similar to diamonds,[5] that allows moissanite to withstand high pressures up to 52.1 gigapascals.[5][13] Colours vary widely and are graded in the I-J-K range on the diamond color grading scale.[14]


A moissanite engagement ring

Moissanite was introduced to the jewelry market in 1998.[15] It is regarded as a diamond alternative, with some optical properties exceeding those of diamond. Its lower price and less exploitative mining practices necessary to obtain it make it a popular alternative to diamonds. Due in part to the similar thermal conductivity of moissanite and diamond, it is a popular target for scams; however, higher electrical conductivity and birefringence of moissanite may alert a buyer to fraud. In addition, thermoluminescence is exhibited in moissanite, such that heating it gradually will cause it to change color starting at around 150 degrees Fahrenheit. This color change can be diagnostic for distinguishing diamond and moissanite, although birefringence and electrical conductivity differential are more practical diagnostic differentiators.[16] On the Mohs scale of mineral hardness it is a 9.5, with a diamond being a 10.[3] In many developed countries, the use of moissanite in jewelry has been patented; these patents expired in August 2015 for the United States, and will expire in 2016 in most other countries except Mexico, where it will remain under patent until 2018.[17][18][19] Moissanite gemstones are sometimes marketed under the trademark Berzelian, a reference to the work of Berzelius on SiC.

Because of its hardness, it can be used in high-pressure experiments, as a replacement for diamond (see diamond anvil cell).[5] Since large diamonds are usually too expensive to be used as anvils, synthetic moissanite is more often used in large-volume experiments. Synthetic moissanite is also interesting for electronic and thermal applications because its thermal conductivity is similar to that of diamonds.[13] High power SiC electronic devices are expected to find use in the design of protection circuits used for motors, actuators, and energy storage or pulse power systems.[20]

See also


  1. ^ Moissanite. Webmineral
  2. ^ Moissanite. Mindat
  3. ^ a b Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W. and Nichols, Monte C. (eds.) "Moissanite". Handbook of Mineralogy. Mineralogical Society of America
  4. ^ "Moissanite".   (Subscription or UK public library membership required.)
  5. ^ a b c d Xu J. & Mao H. (2000). "Moissanite: A window for high-pressure experiments".  
  6. ^ Moissan, Henri (1904). "Nouvelles recherches sur la météorité de Cañon Diablo".  
  7. ^ a b Di Pierro S.; Gnos E.; Grobety B.H.; Armbruster T.; et al. (2003). "Rock-forming moissanite (natural α-silicon carbide)". American Mineralogist 88: 1817–1821. 
  8. ^ Bauer, J.; Fiala, J.; Hřichová, R. (1963). "Natural α–Silicon Carbide". American Mineralogist 48: 620–634. 
  9. ^ Belkin, H. E.; Dwornik, E. J. (1994). "Memorial of Charles Milton April 25, 1896 – October 1990" (PDF). American Mineralogist 79: 190–192. 
  10. ^ Yokoyama, T.; Rai, V. K.; Alexander, C. M. O’D.; Lewis, R. S.; Carlson, R. W.; Shirey, S. B.; Thiemens, M. H.; Walker, R. J. (March 2007). "Nucleosynthetic Os Isotopic Anomalies in Carbonaceous Chondrites" (PDF). 38th Lunar and Planetary Science Conference. 
  11. ^ Kelly, Jim. The Astrophysical Nature of Silicon Carbide.
  12. ^ Saddow S.E & Agarwal A. (2004). Advances in Silicon Carbide Processing an Applications. Artech House Inc.  
  13. ^ a b Zhang J.; Wang L.; Weidner D.J.; Uchida T.; et al. (2002). "The strength of moissanite" (PDF). American Mineralogist 87: 1005–1008. 
  14. ^ Read P. (2005). Gemmology. Massachusetts: Elsevier Butterworth-Heinemann.  
  15. ^ "Moissanite Rights". Professional Jeweler Magazine. May 1998. Retrieved 24 October 2012. 
  16. ^ Diamond Look-Alike Comparison Chart. International Gem Society
  17. ^ Hunter, Charles Eric and Verbiest, Dirk (1995-08-31) U.S. Patent 5,762,896 "Single crystal gems hardness, refractive index, polishing and crystallization "
  18. ^ Hunter, Charles Eric and Verbiest, Dirk (1995-08-31) U.S. Patent 5,723,391 "Silicon carbide gemstones"
  19. ^ "Moissanite Gem Patent Restrictions by Country and Year of Expiration". BetterThanDiamond. 
  20. ^ Bhatnagar, M.; Baliga, B.J. (1993). "Comparison of 6H-SiC, 3C-SiC, and Si for power devices". IEEE Transactions on Electron Devices 40 (3): 645–655.  

Further reading

  • Nassau, Kurt (1999). "Moissanite: a new synthetic gemstone material" (PDF). Journal of Gemmology 26 (7): 425–438. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from National Public Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.